Preparation and Chemical Properties of a Novel Layered Cerium(IV) Phosphate

Mitsutomo Tsuhako,* Mayumi Danjo, Yoshinobu Baba, Masahiko Murakami,† Hiroyuki Nariai,†† and Itaru Motooka††

Department of Chemistry, Kobe Pharmaceutical University, Motoyama kitamachi, Higashinada-ku, Kobe 658

†Tayca Co., Ltd., Funamachi, Taisho-ku, Osaka 551

††Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657

(Received August 7, 1996)

A synthetic method of a novel cerium(IV) bis(hydrogenphosphate) dihydrate, $Ce(HPO_4)_2 \cdot 2H_2O$, hereafter referred to as $CeP \cdot 2H_2O$, has been established by the hydrothermal reaction of cerium(IV) oxide with phosphoric acid in an autoclave. The preparation of $CeP \cdot 2H_2O$ was significantly affected by the reaction conditions: the mixing ratio (P_2O_5/CeO_2) of CeO_2 and phosphoric acid, heating temperature and time, and water vapor pressure. The optimum condition for the preparation of $CeP \cdot 2H_2O$ was the mixing ratio of 1.5—2.0, heating temperature 175—200 °C, heating time 5 h, and water vapor pressure 5.0—7.0 atm.

The results of X-ray powder diffraction, fluorescent X-ray analysis, differential thermal analysis and thermogravimetry (DTA-TG), IR spectrum, and phase transition showed that $CeP \cdot 2H_2O$ is a novel crystalline layered cerium(IV) phosphate having a interlayer distance d = 18.0 Å, longer than any layered phosphates (zirconium(IV), titanium(IV), and tin(IV) phosphates) so far reported.

The reversible phase transition of CeP·2H₂O occurred as follows, when exposed to various relative humidities:

Ce(HPO₄)₂·2H₂O
$$\stackrel{33\%}{\longleftrightarrow}$$
 Ce(HPO₄)₂·1.33H₂O $\stackrel{33\%}{\longleftrightarrow}$ Ce(HPO₄)₂·0.33H₂O 97% ↑↓ P₂O₅ Ce(HPO₄)₂·0.33H₂O

 $CeP \cdot 2H_2O$ dissolved slightly in distilled water and hydrochloric acid, and much more in aqueous sodium hydroxide and aqueous ammonia. $CeP \cdot 2H_2O$ effectively adsorbed ammonia in an aqueous solution and ammonia gas.

Crystalline acid phosphates of tetravalent metals having a layered structure, $M^{IV}(HPO_4)_2 \cdot nH_2O$ ($M^{IV}=Zr$ and Ti; n=1 and 2), are known as a typical inorganic ion exchanger. Layered zirconium and titanium phosphates can readily intercalate polar organic compounds such as amines, $^{3-6}$ amino acids, 7 and alcohols. $^{3,8-10)}$ Thus, they are attracting interest for potential applications as a heat-resistant ion exchanger, catalyst, new functional material, and the intercalating agent for significant organic compounds. $^{11-13)}$

Clearfield and Smith, ¹⁴⁾ based on the X-ray crystal structure analysis, described the structure of α -zirconium phosphate, Zr(HPO₄)₂·H₂O (α -ZrP), as a layered one; each layer consists of zirconium atoms lying nearly in a plane and bridged through phosphate groups which alternate above and below zirconium atom planes. Three oxygens of each phosphate are bound to three different zirconium atoms. The fourth oxygen bears a hydrogen atom and points toward an adjacent plane. Also, Clayden¹⁵⁾ demonstrated in 1987 that γ -zirconium phosphates (γ -ZrP) has two different phosphate groups (H_2 PO₄⁻ and PO₄³⁻) in the molecule, on the

basis of ³¹P MAS NMR. Thus γ -zirconium phosphate as a compound should not be expressed in chemical formula as $Zr(HPO_4)\cdot 2H_2O$, but as $Zr(H_2PO_4)(PO_4)\cdot 2H_2O$ (γ -ZrP).

On the other hand, many publications ^{16–25)} have reported about cerium phosphates which varied widely in accordance with the preparation methods and the reaction conditions. Cerium orthophosphates CePO₄ and CePO₄·0.5H₂O, metaphosphate Ce(PO₃)₃ and ultraphosphate CeP₅O₁₄, are known as trivalent cerium phosphates, ^{16–19)} and cerium diphoshate CeP₂O₇, metaphosphate Ce(PO₃)₄, and hydrogenphosphates Ce(HPO₄)₂·nH₂O (n=0, 0.33, 1, 1.33, and 3) as tetravalent cerium phosphates, ^{20–25)} Many kinds of crystalline acid cerium(IV) phosphates, Ce(HPO₄)₂·nH₂O, have been formed by the reaction of Ce(SO₄)₂ and H₃PO₄, and their structures varied according to the reaction conditions: PO₄/Ce ratio, phosphoric acid concentration, reaction temperature, digestion time, and humidity. ^{21–23,25)}

We have developed a simple technique for the preparation of crystalline layered zirconium(IV) and titanium(IV) phosphates by the direct reaction of metal oxide or hydroxide with phosphoric acid in an autoclave.²⁶⁾ By employing this simple hydrothermal reaction method for the synthesis of cerium phosphate, we could obtain a novel layered cerium-(IV) phosphate having a layer distance d=18.0 Å, longer than any other layered phosphate.^{1,3)} This paper will describe the preparation method for a novel layered cerium phosphate and chemical properties (thermal stability, phase transition in various relative humidity environments, solubility, and adsorption of ammonia).

Experimental

Preparation of Crystalline Layered Cerium(IV) Phosphate.

Crystalline layered cerium(IV) bis(hydrogenphosphate) dihydrate, Ce(HPO)₄)₂·2H₂O (CeP·2H₂O), was prepared by the following method. Cerium(IV) oxide CeO₂ and 85% phosphoric acid were mixed uniformly at molar ratios (P₂O₅/CeO₂) of 0.5—2.0. Then a prescribed amount of the mixture was placed in a test tube (25 cm³) and heated in an autoclave (300 cm³) at 100—250 °C for 1—5 h. The water vapor pressure in the autoclave was controlled to the dictated levels either with the amount (5—50 g) of the mixture or by adding water in the autoclave before heating. The cerium phosphate obtained was completely washed with distilled water and stored in a vacuum desiccator over saturated potassium dihydrogenphosphate solution (relative humidity ca. 97%).

Analytical Procedures. X-ray diffraction patterns were measured with a Rigaku Geigerflex 2011 using Ni-filtered Cu $K\alpha$ radiation to monitor cerium phosphates and to determine the interlayer spacings. A Rigaku Denki Differential Thermogravimetric Analyzer, TG8110, was used for the DTA and TG measurements with a platinum–rhodium pan in an air flow. Analyses of Ce and P in cerium phosphate were performed on a Rigaku X-ray fluorescence spectrometer RIX 2000.

Phase Transition of CeP·2H₂O in Various Relative Humidity Environments. The phase transition of CeP·2H₂O at various relative humidities was investigated by leaving the sample of cerium phosphate in vacuum desiccators over the saturated

 KH_2PO_4 (relative humidity ca. 97%), NaCl (75%) and MgCl₂ solutions (33%), and over P_2O_5 (0%) at room temperature. The phase transition was monitored by X-ray diffraction until equilibrium at intervals of one day.

Measurement of Solubility. A part of CeP- $2H_2O$ was dissolved into the distilled water, 0.1 mol dm^{-3} hydrochloric acid or sodium hydroxide solution by stirring in a water bath controlled at 30 ± 0.1 °C. A suspension was taken at intervals and centrifuged. Phosphorus concentration in supernatant liquid was determined by spectrophotometry of phosphorus—molybdenium blue complex, and the amounts (g dm $^{-3}$) of CeP- $2H_2O$ dissolved in the corresponding solutions were determined.

Adsorption of Ammonia in an Aqueous Solution. CeP·2H₂O (1.00 g) was added to 200 cm³ of 0.1 mol dm⁻³ aqueous ammonia and well shaken in an incubator of 30 °C. A suspension was taken at intervals and centrifuged, and 10 cm³ of the supernatant was evaluated for ammonia adsorbed into CeP·2H₂O by the titration with 0.05 mol dm⁻³ hydrochloric acid. Solubility of CeP·2H₂O in 0.1 mol dm⁻³ aqueous ammonia was also determined by the method described above.

Adsorption of Ammonia Gas. CeP· $2H_2O$ (0.05 g) was placed in a gas bag (3000 cm³) of polyethylene, which was then filled with ammonia gas (1040 ppm). The concentration of ammonia gas was determined with a Kitagawa gas detector. A similar experiment was carried out with an activated characoal-based commercial deodorants (0.5 g) for comparison.

Results and Discussion

Structure of a Novel Layered Cerium Phosphate. Unknown cerium phosphate and cerium(IV) pyrophosphate, CeP₂O₇, were obtained by the hydrothermal reaction of CeO₂ and phosphoric acid. Figure 1 shows the X-ray diffraction pattern of the unknown cerium phosphate formed by the reaction of CeO₂ and phosphoric acid at a molar ratio of 1.5, 200 °C for 5 h, and water vapor pressure 7 atm.

Ce and P contents in the unknown cerium phosphate were

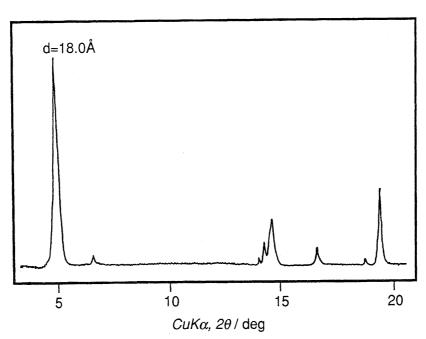


Fig. 1. X-Ray diffraction pattern of the unknown cerium phosphate.

determined by fluorescent X-ray analysis, and resulted in a P to Ce ratio of 2.0.

Figure 2 shows the DTA-TG curves of the unknown compound, showing three remarkable endothermic peaks with 9.6% weight loss due to the dehydration of water of crystallization between 60 and 100 °C. There is another endothermic peak at 385 °C, with 4.9% loss in weight. The weight loss is attributed to the dehydration of structural water. Thus, the unknown cerium phosphate was found to contain about 14.5% water in total.

From the results of fluorescent X-ray analysis and DTA-TG, the unknown cerium phosphate can be formulated as CeO₂·P₂O₅·3H₂O in the chemical composition. Two water molecules dehydrated up to 150 °C are considered to be waters of crystallization. The remaining one water molecule should be a structural water, since the unknown cerium phosphate was condensed to cerium(IV) diphosphate, CeP₂O₇, at 385 °C. The total observed and calculated weight losses, 14.5 and 14.4%, are in good agreement.

IR Spectrum of Unknown Cerium Phosphate. The IR spectrum of unknown cerium phosphate is shown in Fig. 3. As can be seen, characteristic absorptions of hydrogenphosphate group^{27,28)} appeared at about 2360, 1240, and 1050—850 cm⁻¹, and remarkable absorption of the PO₄³⁻ group²⁸⁾ between 1100 and 1000 cm⁻¹. On the other hand, there are no absorptions at 950—930 and 750—720 cm⁻¹, indicating the absence of any P-O-P groups²⁸⁾ in the unknown compound. Therefore, the unknown cerium phosphate is cerium hydrogenphosphate with the P-OH group in the structure. This compound contains water of hydration, as shown by the strong absorption bands at the vicinity of 3300 and 1600 cm⁻¹.

The IR spectrum of the unknown cerium phosphate was consistent with that of layered cerium(IV) bis(hydrogenphos-



Fig. 3. IR spectrum of the unknown cerium phosphate.

phate) Ce(HPO₄)₂·1.33H₂O (CeP·1.33H₂O) formed by the hydrothermal synthesis, except for the absorption band at $3000-3500\,\mathrm{cm^{-1}}$ by hydration water of CeP·1.33H₂O. This result indicates that the unknown cerium phosphate in a layered phosphate such as CeP·1.33H₂O.

Phase Transition of Unknown Cerium Phosphate in Various Relative Humidity Environments. summarizes the phase transition of the unknown phosphate, CeO₂·P₂O₅·3H₂O, in various relative humidity When kept in a relative humidity of environments. 33% (in a desiccator with saturated MgCl₂ solution), it gradually lost a part of the water of hydration and transformed to the layered cerium(IV) bis(hydrogenphosphate), $Ce(HPO_4)_2 \cdot 1.33H_2O$ (interlayer distance d =16.1 Å, CeP·1.33H₂O), and dehydrated further to Ce- $(HPO_4)_2 \cdot 0.33H_2O$ (d=14.5 Å, CeP·0.33H₂O) already reported by Alberti et al.²³⁾ In a relative humidity of 75% (saturated NaCl solution), on the other hand, the unknown compound did not change. When left in the desiccator with P₂O₅, this unknown compound changed completely to Ce-

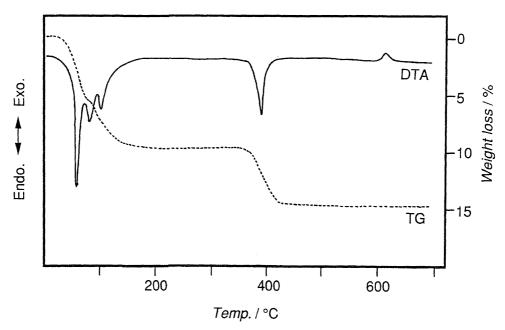


Fig. 2. DTA and TG curves of the unknown cerium phosphate.

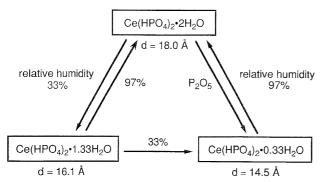


Fig. 4. Phase transition of the unknown cerium phosphate under various relative humidities.

(HPO₄)₂·0.33H₂O which, when kept in an relative humidity of 97% (saturated KH₂PO₄ solution), turned back to the initial unknown compound.

From the results of fluorescent X-ray analysis, DTA-TG, IR spectrum, and phase transition in different relative humidity environments, the chemical formula for the unknown cerium phosphate can be proposed to be $Ce(HPO_4)_2 \cdot 2H_2O$, which is a novel layered phosphate having a much longer layer distance (d=18.0 Å).

While Alberti et al. ^{21–24)} reported some layered cerium(IV) bis(hydrogen phosphate), $Ce(HPO_4)_2 \cdot nH_2O$ (n=0, 0.33, 1, 1.33,and 3) in the reaction of $Ce(SO_4)_2$ and phosphoric acid, these phosphates are not the same as the $Ce(HPO_4)_2 \cdot 2H_2O$ obtained in the present study.

Relation between the Formation of CeP·2H₂O and Heating Temperature. Figure 5 shows the relation between the yields of CeP·2H₂O and heating temperature in the hydrothermal reaction of CeO₂ and H₃PO₄. The preparation conditions were the mixing ratio (P₂O₅/CeO₂) of 1.5 and the heating time 5 h. CeP·2H₂O was readily obtained

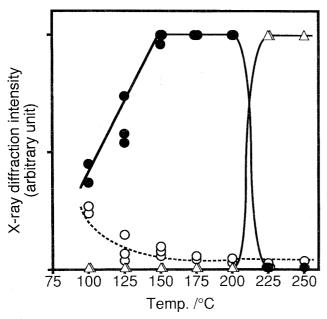


Fig. 5. Relation between the yields of $Ce(HPO_4)_2 \cdot 2H_2O$ and heating temperature. P_2O_5/CeO_2 : 1.5, heating time: 5 h, \blacksquare : $Ce(HPO_4)_2 \cdot 2H_2O$, \triangle : CeP_2O_7 , \bigcirc : CeO_2 .

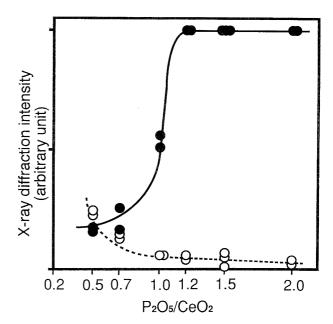


Fig. 6. Relation between the yields of $Ce(HPO_4)_2 \cdot 2H_2O$ and the mixing ratio (P_2O_5/CeO_2) . Heating temperature: 175 °C, heating time: 5 h, \bullet : $Ce(HPO_4)_2 \cdot 2H_2O$, \bigcirc : CeO_2 .

at 175—200 °C, and not at all over 225 °C, where CeP_2O_7 prevailed. Although $CeP \cdot 2H_2O$ was also formed below 150 °C, considerable amounts of the starting material (CeO_2) remained. Thus, the preparation of $CeP \cdot 2H_2O$ was carried out at the temperatures between 175 and 200 °C in the following synthetic experiments.

At 175—200 °C, CeP·2H₂O was formed in the heating time of an hour, but 3 h or more heating were necessary for the high degree of crystallinity of the product and for reproducibility in yield.

Relation between the Yield of CeP-2H₂O and Mixing

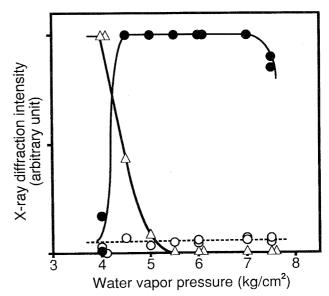


Fig. 7. Relation between the yields of Ce(HPO₄)₂·2H₂O and water vapor pressure. P₂O₅/CeO₂: 1.5, heating temp: 175 °C, heating time: 5 h, ●: Ce(HPO₄)₂·2H₂O, △: CeP₂O₇, ○: CeO₂.

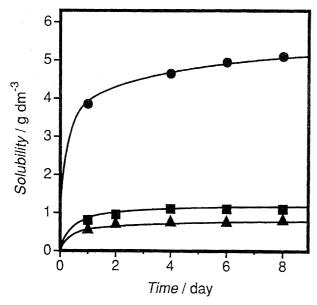


Fig. 8. Solubility of $Ce(HPO_4)_2 \cdot 2H_2O$ in H_2O , HCl, and NaOH. \blacksquare : H_2O , \blacktriangle : 0.1 mol dm⁻³ HCl, \bullet : 0.1 mol dm⁻³ NaOH.

Ratio. Figure 6 shows the relationship between the yields of CeP: $2H_2O$ and the mixing ratio (P_2O_5/CeO_2) at 175 °C for 5 h. The yield of CeP: $2H_2O$ gradually increased with the molar ratio (P_2O_5/CeO_2), and was constant at a P_2O_5/CeO_2 of over 1.5. However, at a mixing ratio of 1.2 and more the product was hydroscopic due to the excess phosphoric acid.

Relation between the Yield of CeP·2H₂O and Water Vapor Pressure. Figure 7 shows the relation between the yields of CeP·2H₂O and water vapor pressure at a mixing ratio of 1.5 and 175 °C. The water vapor pressure was controlled by the amount (5—50 g) of the mixture of CeO₂ and H₃PO₄, and by adding water in advance in the autoclave. As can be seen, the yields of CeP·2H₂O increased remarkably

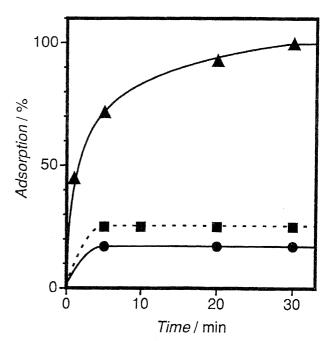


Fig. 10. Adsorption of ammonia gas by Ce(HPO₄)₂·2H₂O and commercial adsorbents. NH₃: 1040 ppm, gas bag: 3000 cm³, ▲: Ce(HPO₄)₂·2H₂O (0.05 g), ■: commercial adsorbent A (0.5 g), ●: commercial adsorbent B (0.5 g).

at the water vapor pressures of around 4.5 atm and more, and attained at a maximum between 5.0 and 7.0 atm. However, it decreased gradually at more than 7.5 atm. Below 4.0 atm, CeP·2H₂O was not formed but CeP₂O₇ alone. Thus, it can be pointed out that the preparation of CeP·2H₂O was significantly affected by the water vapor pressure in the autoclave, and CeP·2H₂O was predominantly formed at water vapor pressures of 5.0—7.0 atm.

Solubility of CeP-2H₂O. Figure 8 shows the solubility of $CeP-2H_2O$ in distilled water, and 0.1 mol dm⁻³ hydrochloric

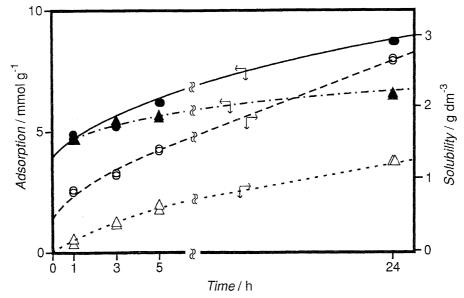


Fig. 9. Adsorption of ammonia in an aqueous solution by $Ce(HPO_4)_2 \cdot 2H_2O$ and $Ce(HPO_4)_2 \cdot 1.33H_2O$ and their solubilities. \bullet , \bigcirc : $Ce(HPO_4)_2 \cdot 2H_2O$, \blacktriangle , \triangle : $Ce(HPO_4)_2 \cdot 1.33H_2O$.

acid and sodium hydroxide solution. CeP·2H₂O dissolved slightly in water and hydrochloric acid, and much more in sodium hydroxide solution. It is also known that the layered zirconium and titanium phosphates tend to undergo hydrolysis in alkaline solutions²⁶⁾ and increase in solubility as a result of destruction of the crystal structure. CeP·2H₂O was observed to be rather unstable in alkaline solutions.

Adsorption of Ammonia in an Aqueous Solution. Figure 9 shows the adsorption of ammonia in an aqueous solution by CeP·2H₂O. The adsorption into CeP·1.33H₂O is also shown for comparison. CeP·2H₂O adsorbed ammonia as much as about 4.9 mmol g⁻¹ by an hour of contact with an aqueous solution of ammonia. The amount of ammonia adsorbed into CeP·2H₂O increased gradually with the stirring time, and attained to about 8.8 mmol g⁻¹ at 24 h. This exceeded by far the theoretical adsorption value (amounts of proton, 5.43 mmol g⁻¹) of CeP·2H₂O because of the dissolution of CeP·2H₂O dissolved more in aqueous ammonia than CeP·1.33H₂O.

Adsorption of Ammonia Gas Due to CeP·2H₂O. The adsorption of ammonia gas due to CeP·2H₂O is shown in Fig. 10. CeP·2H₂O completely adsorbed about 1000 ppm ammonia gas within 30 min. The maximal acid strength of CeP·2H₂O, measured by Benesi's method,²⁹⁾ was $pK_a=-3.3$. Thus, it is noted that the adsorption of ammonia to CeP·2H₂O is the chemisorption based on the acid–base reaction. Although CeP·2H₂O adsorbed ammonia gas somewhat less quickly than the layered zirconium and titanium phosphates formed by the same method, CeP·2H₂O exhibited a far better deodorant effect than activated characoal-based commercial adsorbents.

Conclusion

Unknown crystalline cerium(IV) phosphate was obtained by the hydrothermal reaction of CeO_2 and phosphoric acid. The unknown phosphate was recognized as a novel cerium-(IV) bis(hydrogenphosphate) dihydrate, $Ce(HPO_4)_2 \cdot 2H_2O$, by fluorescent X-ray analysis, DTA-TG, IR spectroscopy, and phase transition study in various relative humidity environments. $CeP \cdot 2H_2O$ has a layered structure with a interlayer distance d=18.0 Å, longest of any known layered phosphates.

CeP•2H₂O was readily formed by the hydrothermal reaction of CeO₂ and H₃PO₄ in an autoclave at the mixing ratio (P₂O₅/CeO₂) of 1.5—2.0, heating temperature 175—200 °C for 5 h, and water vapor pressure 5.0—7.0 atm. When CeP•2H₂O was kept in a lower relative humidity environment, a part of the water of hydration was dehydrated to give Ce(HPO₄)₂•1.33H₂O (d=16.1 Å) and Ce(HPO₄)₂•0.33H₂O (d=14.5 Å). CeP•1.33H₂O and CeP•0.33H₂O rehydrated in higher humidity environments and turned back to the starting CeP•2H₂O.

CeP \cdot 2H $_2$ O exhibited a small solubility (0.08—0.11 g/100 cm 3) in water and hydrochloric acid, while it dissolved somewhat in sodium hydroxide and aqueous ammonia. Ammonia in an aqueous solution and ammonia gas were quickly adsorbed into CeP \cdot 2H $_2$ O.

References

- 1) A. Clearfield, "Inorganic Ion Exchange Materials," ed by A. Clearfield, CRC Press, Boca Raton, Florida (1982), p. 77 and 91.
- 2) R. Llavona, M. Suarez, J. R. Garcia, and J. Rodriguez, *Inorg. Chem.*, **28**, 2863 (1989).
- 3) G. Alberti and U. Costantino, "Intercalation Chemistry," ed by M. S. Whittingham and A. J. Jacobson, Academic Press, New York (1982), p. 147.
- 4) R. M. Tindwa, D. K. Ellis, G. Peng, and A. Clearfield, *J. Chem. Soc.*, *Faraday Trans.*, **81**, 545 (1985).
- 5) A. Menendez, A. Espina, C. Trobajo, J. R. Garcia, and J. Rodriguez, *J. Inclusion Phenom. Mol. Recognition Chem.*, **15**, 215 (1993).
- 6) A. Menendez, M. Barcena, E. Jaimez, J. R. Garcia, and J. Rodriguez, *Chem. Mater.*, **5**, 1078 (1993).
- 7) T. Kijima, S. Ueno, and M. Goto, *J. Chem. Soc.*, *Dalton. Trans.*, **1982**, 2497.
 - 8) U. Costantino, J. Chem. Soc., Dalton Trans., 1979, 402.
- 9) Y. Hasegawa and S. Kotani, J. Inclusion Phenom. Mol. Recognition Chem., 16, 329 (1993).
- 10) U. Costantino, J. Inorg. Nucl. Chem., 43, 1895 (1981).
- 11) T. Kijima, Nippon Kagaku Kaishi, 1986, 1145.
- 12) Y. Kanzaki and M. Abe, *Bull. Chem. Soc. Jpn.*, **64**, 2292 (1991).
- 13) Y. Kanzaki and M. Abe, *Bull. Chem. Soc. Jpn.*, **65**, 180 (1992).
- 14) A. Clearfield and G. D. Smith, *Inorg. Chem.*, **8**, 431 (1969).
- 15) N. J. Clayden, J. Chem. Soc., Dalton Trans., 1987, 1877.
- 16) Y. Hikichi and K. Fukuo, *Nippon Kagaku Kaishi*, **1975**, 622 and 1311.
- 17) M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, and M. Kobayashi, *Chem. Lett.*, **1977**, 195.
- 18) M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, and M. Kobayashi, *Bull. Chem. Soc. Jpn.*, **52**, 1034 (1979).
- 19) A. Durif, Bull. Soc. Fr. Mineral. Cristallogr., **94**, 314 (1971).
- 20) H. Y-P. Hong, *Acta Crystallogr.*, **30**, 468 (1974).
- 21) G. Alberti, M. A. Massucci, and E. Torracca, *J. Inorg. Nucl. Chem.*, **30**, 579 (1967).
- 22) G. Alberti, U. Costantino, F. D. Gregorio, P. Galli, and E. Torracca, *J. Inorg. Nucl. Chem.*, **30**, 295 (1968).
- 23) G. Alberti, U. Costantino, and L. Zsinka, *J. Inorg. Nucl. Chem.*, **34**, 3549 (1972).
- 24) G. Alberti and U. Costantino, J. Chromatogr., **102**, 5 (1974).
- 25) R. G. Herman and A. Clearfield, *J. Inorg. Nucl. Chem.*, **37**, 1697 (1975).
- 26) M. Tsuhako, Y. Horii, H. Nariai, and I. Motooka, *Nippon Kagaku Kaishi*, **1987**, 1541; **1988**, 1810; **1990**, 740.
- 27) L. Zsinka, L. Szirtes, and J. Mink, *J. Chromatogr.*, **102**, 109 (1974).
- 28) D. E. C. Corbridge, J. Appl. Chem., 6, 456 (1956).
- 29) H. A. Beneshi, J. Am. Chem. Soc., 78, 5490 (1956).